From molecular signatures to predictive biomarkers: modeling disease pathophysiology and drug mechanism of action
نویسندگان
چکیده
Omics profiling significantly expanded the molecular landscape describing clinical phenotypes. Association analysis resulted in first diagnostic and prognostic biomarker signatures entering clinical utility. However, utilizing Omics for deepening our understanding of disease pathophysiology, and further including specific interference with drug mechanism of action on a molecular process level still sees limited added value in the clinical setting. We exemplify a computational workflow for expanding from statistics-based association analysis toward deriving molecular pathway and process models for characterizing phenotypes and drug mechanism of action. Interference analysis on the molecular model level allows identification of predictive biomarker candidates for testing drug response. We discuss this strategy on diabetic nephropathy (DN), a complex clinical phenotype triggered by diabetes and presenting with renal as well as cardiovascular endpoints. A molecular pathway map indicates involvement of multiple molecular mechanisms, and selected biomarker candidates reported as associated with disease progression are identified for specific molecular processes. Selective interference of drug mechanism of action and disease-associated processes is identified for drug classes in clinical use, in turn providing precision medicine hypotheses utilizing predictive biomarkers.
منابع مشابه
Identification of diagnostic biomarkers by bioinformatics analysis in the inflamed and non-inflamed intestinal mucosa in Crohn\'s disease patients
Background: Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) which despite the unknown details is generally related to genetic, immune system, and environmental factors. In this study, we identify transcriptional signatures in patients with CD and then explain the potential molecular mechanisms in inflamed and non-inflamed intestinal mucosa in these patients. Materials and Me...
متن کاملInvestigating the Mechanism of Action of SARS-CoV-2 Virus for Drug Designing: A Review
Coronavirus Disease 2019 (COVID-19) is a viral pneumonia emerged in December 2019 in Wuhan, China. Its cause is a new virus from the coronavirus family scientifically named Coronavirus Acute Respiratory Syndrome 2 (SARS-CoV-2). In this review study, articles published in English until March 23, 2020 on new coronavirus infection were reviewed. These articles are obtained by searching in PubMed, ...
متن کاملHuman Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملHuman Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملThe review of pathogenic mechanism of Aeromonas hydrophila and action of tetracycline against it in aquatic animals
Aeromonas hydrophila is one of common bacterial disease in aquatic animals and its outbreak cause to decrease of aquatic production. Aeromonas disease is due to a protein toxin, aerolysin that exported by Aeromonas hydrophila. This protein toxin forms channels on target cells membrane, disrupting normal activities and cause to destruction and death of them. Aerolysin toxic protein is secreted b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2014